La VJ. Differentiation sexually, factor determinant des formes de l’ob sit. Presse Med. 1947;30:339–40.
Haller H. Epidemiology and associated risk factors of hyperlipoproteinemia. Z Gesamte Inn Med. 1977;32:124–8.
Google Scholar
Gerald BP. Relationship between serum sex hormones and glucose, insulin, and lipid abnormalities in men with myocardial infarction. Proc Natl Acad Sci U S A. 1977;74:1729–33.
Gerald BP. Sex hormones, risk factors and cardiovacular disease. Am J Med. 1978;65:7–11.
Gupta A, Gupta V. Metabolic syndrome : What are the risks for humans ? Biosci Trends. 2010;4(5):204–12.
Google Scholar
Alberti KGMM, Zimmet PZ. Definition , Diagnosis and Classification of Diabetes Mellitus and its Complications Part 1 : Diagnosis and Classification of Diabetes Mellitus Provisional Report of a WHO Consultation; 1998. p. 539–53.
Expert panel on detection evaluation and treatment of high blood cholesterol in adults. Executive summary of the third report (NCEP) -adult treatment panel III. J Am Med Assoc. 2001;285(19):2486–97.
Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome-a new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006;23(5):469–80 Available from: http://doi.wiley.com/10.1111/j.1464-5491.2006.01858.x.
Google Scholar
Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation. 2005;112(17):2735–52.
Google Scholar
Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; International. Circulation. 2009;120(16):1640–5.
Google Scholar
Timóteo AT. Diet in patients with metabolic syndrome: what is the ideal macronutrient composition? Rev Port Cardiol (English Ed). 2018;37(12):1001–6. https://doi.org/10.1016/j.repce.2017.11.021.
Alhassan S, Kim S, Bersamin A, King AC, Gardner CD. Dietary adherence and weight loss success among overweight women: results from the a to Z weight loss study. Int J Obes. 2008;32(6):985–91.
Google Scholar
Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360(9):859–73 Available from: http://www.nejm.org/doi/10.1056/NEJMoa0804748.
Google Scholar
Steckhan N, Hohmann CD, Kessler C, Dobos G, Michalsen A, Cramer H. Effects of different dietary approaches on inflammatory markers in patients with metabolic syndrome: a systematic review and meta-analysis. Nutrition. 2016;32(3):338–48. https://doi.org/10.1016/j.nut.2015.09.010.
Google Scholar
Beastall GH. Adding value to laboratory medicine: a professional responsibility. Clin Chem Lab Med. 2013;51(1):221–7.
Google Scholar
Schmidt RL, Ashwood ER. Laboratory medicine and value-based health care. Am J Clin Pathol. 2015;144(3):357–8.
Google Scholar
Sperandio N, Priore SE. Inquéritos antropométricos e alimentares na população Brasileira: Importante fonte de dados para o desenvolvimento de pesquisas. Cienc e Saude Coletiva. 2017;22(2):499–508.
Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a Meta-analysis. Am J Med. 2006;119(10):812–9.
Google Scholar
Saltiel AR, Olefsky JM. Inflammatory linking obesity and metabolic disease and metabolic disease. J Clin Invest. 2017;127(1):1–4.
Google Scholar
Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106(SUPPL. 3):S5–78.
Google Scholar
Semnani-Azad Z, Khan TA, Blanco Mejia S, De Souza RJ, Leiter LA, Kendall CWC, et al. Association of Major Food Sources of fructose-containing sugars with incident metabolic syndrome: a systematic review and Meta-analysis. JAMA Netw Open. 2020;3(7):1–15.
World Health Organization. Obesity: preventing and managing the global epidemic of obesity. Rep WHO Consult Obes. 2000;252.
Lipschitz DA. Screening for nutritional status in the elderly. Prim Care. 1994;21(1):55–67.
Google Scholar
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.
Google Scholar
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.
Google Scholar
Karvetti RL, Knuts LR. Validity of the 24-hour dietary recall. J Am Diet Assoc. 1985;85(11):1437–42 Available from: http://www.ncbi.nlm.nih.gov/pubmed/4056262.
Google Scholar
National Institutes of Health. National Cancer Institute. Dietary Assessment Primer, 24-hour Dietary Recall (24HR) at a glance. 2017.
de Selem SSC, de Carvalho AM, Verly-Junior E, Carlos JV, Teixeira JA, Marchioni DML, et al. Validity and reproducibility of a food frequency questionnaire for adults of São Paulo, Brazil. Rev Bras Epidemiol. 2014;17(4):852–9.
Google Scholar
Arquivos da Sociedade Brasileira de Cardiologia. Atualização da Diretriz Brasileira De Dislipidemias e Prevenção da Aterosclerose – 2017. SBC, vol. 109; 2017.
IOM/ Food and Nutrition Board. Dietary reference intakes for energy, carbohydrate, Fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Natl Acad Press. 2002;5:107–264.
Nettleton JA, Follis JL, Ngwa JS, Smith CE, Ahmad S, Tanaka T, et al. Gene × dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry. Hum Mol Genet. 2015;24(16):4728–38.
Google Scholar
Koochakpoor G, Daneshpour MS, Mirmiran P, Hosseini SA, Hosseini-Esfahani F, Sedaghatikhayat B, et al. The effect of interaction between Melanocortin-4 receptor polymorphism and dietary factors on the risk of metabolic syndrome. Nutr Metab. 2016;13(1):1–9. https://doi.org/10.1186/s12986-016-0092-z.
Google Scholar
Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity. Circulation. 2016;133(2):187–225.
Google Scholar
Jiao J, Liu G, Shin HJ, Hu FB, Rimm EB, Rexrode KM, et al. Dietary fats and mortality among patients with type 2 diabetes: analysis in two population based cohort studies. BMJ. 2019;366:8–11.
Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100(1):278–88.
Google Scholar
Martínez-González MA, Salas-Salvadó J, Estruch R, Corella D, Fitó M, Ros E. Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog Cardiovasc Dis. 2015;58(1):50–60. https://doi.org/10.1016/j.pcad.2015.04.003.
Google Scholar
Jakulj F, Zernicke K, Bacon SL, Van Wielingen LE, Key BL, West SG, et al. A high-fat meal increases cardiovascular reactivity to psychological stress in healthy young adults. J Nutr. 2007;137(4):935–9.
Google Scholar
O’Keefe JH, Bell DSH. Postprandial hyperglycemia/hyperlipidemia (postprandial Dysmetabolism) is a cardiovascular risk factor. Am J Cardiol. 2007;100(5):899–904.
Google Scholar
Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, Ocvirk S, Chen C, et al. Diet and the human gut microbiome: an international review. Dig Dis Sci. 2020;65(3):723–40. https://doi.org/10.1007/s10620-020-06112-w.
Google Scholar
O’Keefe SJD. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 2016;13(12):691–706 Available from: http://www.nature.com/articles/nrgastro.2016.165.
Google Scholar
O’Keefe SJD. The association between dietary fbre defciency and high-income lifestyle-associated diseases: Burkitt’s hypothesis revisited. Lancet Gastroenterol Hepatol. 2019;4(12):984–96.
Google Scholar
O’Keefe SJD. Plant-based foods and the microbiome in the preservation of health and prevention of disease. Am J Clin Nutr. 2019;110(2):265–6.
Google Scholar
Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: a meta-analysis of prospective cohort studies. Arch Cardiovasc Dis. 2016;109(1):39–54. https://doi.org/10.1016/j.acvd.2015.09.005.
Google Scholar
Park Y, Subar AF, Hollenbeck A, Schatzkin A. Dietary Fiber intake and mortality in the NIH-AARP diet and health study. Arch Intern Med. 2011;171(12):1–7 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.
Benítez-Páez A, Gómez Del Pulgar EM, Kjølbæk L, Brahe LK, Astrup A, Larsen LH, et al. Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends Food Sci Technol. 2016;57:201–12.
Liu S, Willett WC, Manson JAE, Hu FB, Rosner B, Colditz G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr. 2003;78(5):920–7.
Google Scholar
Krzyszycha R, Szponar B. Body mass index (BMI) and dietary preferences of women living in rural areas. Rocz Państwowego Zakładu Hig. 2009;60(1):75–7.
Tucker LA. Fiber intake and insulin resistance in 6374 adults: the role of abdominal obesity. Nutrients. 2018;10(2):237.
Google Scholar
Trigueros L, Peña S, Ugidos AV, Sayas-Barberá E, Pérez-Álvarez JA, Sendra E. Food ingredients as anti-obesity agents: a review. Crit Rev Food Sci Nutr. 2013;53(9):929–42.
Google Scholar
Solah VA, Kerr DA, Hunt WJ, Johnson SK, Boushey CJ, Delp EJ, et al. Effect of fibre supplementation on body weight and composition, frequency of eating and dietary choice in overweight individuals. Nutrients. 2017;9(2):1–14.
Eastwood MA, Morris ER. Physical properties of dietary fiber that influence physiological function: a model for polymers along the gastrointestinal tract. Am J Clin Nutr. 1992;55(2):436–42.
Google Scholar
Lafond DW, Greaves KA, Maki KC, Leidy HJ, Romsos DR. Effects of two dietary fibers as part of ready-to-eat cereal (RTEC) breakfasts on perceived appetite and gut hormones in overweight women. Nutrients. 2015;7(2):1245–66.
Google Scholar
Lee I, Shi L, Webb DL, Hellström PM, Risérus U, Landberg R. Effects of whole-grain rye porridge with added inulin and wheat gluten on appetite, gut fermentation and postprandial glucose metabolism: a randomised, cross-over, breakfast study. Br J Nutr. 2016;116(12):2139–49.
Google Scholar
Byrne CS, Chambers ES, Morrison DJ, Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes. 2015;39(9):1331–8. https://doi.org/10.1038/ijo.2015.84.
Google Scholar
Sánchez D, Miguel M, Aleixandre A. Dietary fiber, gut peptides, and adipocytokines. J Med Food. 2012;15(3):223–30.
Google Scholar
Schacter DL, Gilbert DT, Daniel MW. Semantic and episodic memory. 2nd ed. New York: Worth; 2011. p. 240–1.
National Institutes of Health; National Cancer Institute. Dietary Assessment Primer, 24-hour Dietary Recall (24HR) At a Glance Available from: https://dietassessmentprimer.cancer.gov/. [cited 3 Dec 2020].
DeBiasse MA, Bowen DJ, Quatromoni PA, Quinn E, Quintiliani LM. Feasibility and acceptability of dietary intake assessment via 24-hour recall and food frequency questionnaire among women with low socioeconomic status. J Acad Nutr Diet. 2018;118(2):301–7. https://doi.org/10.1016/j.jand.2017.08.011.
Google Scholar